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ABSTRACT

Propellant sloshing may be established by the bending of a space

vehicle which exhibits low structural frequencies. Such propellant

oscillations are of importance, for there is the possibility of extreme

amplitudes if the excitation (bending) frequency is in the neighborhood

of one of the natural frequencies of the fuel. Forces and moments

exerted by the oscillating propellant on the tank are determined due to

forced bending excitation for a liquid in a circular cylindrical ring

, sector tank with a free fluid surface. Special cases SUCh as the tank

with sector and circular cross section are obtained by limit consider°

ation. As i8 expected, force and moment of the liquid increase sharply

at the resonant frequency of the propellant. The total force and moment

are generally less for a given maximur_ bending amplitude than for a

translational motion of the same magnitude, The maximum dynamic effect[

occur when the free fluid surface is located around the point of maxi-

mum bending displacement.
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LIST OF SYMBOLS

Symbo i De finit ion

r, q_, z Cylindrical coordinates

t Time

= go + _ velocity potential

_' Disturbance potential

go Potential of liquid without free fluid surface

Mass density of liqui¢_.

0 Pressure of liquid

a Radius of outer tankwell

b Radius of inner tank wall

k = a/b Diameter ratio

h Liquid height

g Longitudinal acceleration (in z - direction)

¢0 Eigen frequencies of liquidmn

f_ Forced circular frequency

= _/_mn Frequency ratioY

xo(z) AmpliLude of tank excitation in x - direction

yo(z) Amplitude of tank excitation in y - direction

F Fluid force

M Fluid moment

z Force fluid surface displacements measured from

the undisturbed position

ur, u_, w Flow velocity
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LEST OF SYMBOLS (CONT'D)

Symbo i De fInlt ion

" J , Y Bessel functions of order m/2C_ of first
m m and second kind
2Q: 2o_

_mn Roots of _m/2C_(_) = 0 (see text)

e Roots of J' (e) - 0
mn m

2_

2_C_ - _ Container vertex angle
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THEORY OF LIQUID SLOSHING IN
COMPAR_dENTED CYLINDRICAL T_/_KS DUE

TO BENDING EXCITATION

by Helmut F. Bauer

S_Y

Propellant sloshing may be 6stablished by the bending of a space

vehicle which exhibits low structural frequencies. Such propellant

oscillations are of importance, for there is the possibility of extreme

amplitudes if the cxcitation (bending) frequency is in the neighborhood

of one of the natural frequencies of the fuel. Forces and moments

exerted by the oscillating propellant on the tank are determined due to

" forced bending excitation for a liquid in a circular cylindrical ring

sector tank with a free fluid surface. Special cases su6h as the tank

with sector and circular cross section are obtained hy limit consider-

ation. As is expected, force and moment of the liquid increase sharply

at the resonant frequency of the propellant. The total force and moment

are generally less for a given maximum bending amplitude than for a

translational motion of the same magnitude. The maximum dynamic effects

occur when the free fluid surface _s located around the point of maxi_

m_n bending displacement.

I. INTRODUCTION

_e constantly increasing size of space vehicles introduces more

new problems in modern space technology. As vehicles lengthen, their

fundamental bending frequencies become lower; ae their diameters become

larger, the natural frequency of the propellant becomes lower. These

trends restrict the choice of the control frequency value. Considerable

and acute problems result from this close grouping of frequencies because

of the interaction of structure, control and propc]lant sloshing.

Performance considerations make necessary a design exhibiting low

- structural frequencies. Therefore, the effect of elastic vibrations of

the vehicle structure upon the propellant sloshiDg a_ the control system

becomes more critical because of their low frequencies and the overall

low damping.
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Although the sloshing frequencies are even closer to the control

frequency, the effect of propellant sloshing upon stability can be

_andled more easily than the effect of the elastic structure provided

the phases are chosen properly. Of the great many problems involved

here_ the one of the propellant sloshing due to bending vibrations
will be treated.

In the tanks of a missile or space vehicle: sloshing will seriously

affect the performance and stability of the vehicle, in some cases, even

causing total flight failure, Since more than 90% of the total weight of

a vehicle at launch is liquid, propellant sloshing represents an area

which needs special attentio i even in the preliminary design stage. The

tendency in modern space tec,_nology is toward a continuous increase in

size of space vehicles making investigations of this kind mandatory.

Therefore, for a realistic dynamic stability and control analysis_ even

the effect of the oscillating propellant due to bending vibrations of
the structure has to be considered.

For space vehicles, which exhibit low propellant and bending

frequencies, subdivision of tanks might be of importance to reduce

the vibrating sloshing masses and increase the Eigen frequency of _ae

propellant_ thus moving it further away from the control frequeucy_

This indicates that the sloshing frequency is becoming closer to the
structural frequencies. In the following, therefore, the liquid oscil-

lations in a cylindrical tank with circular ring sector cross section

will be treated with respect to bending oscillations. From the results,

one can obtain by limit considerations the solutions of the most im-

portant cases°

II. FORCED BENDING OSCILLATIONS

The flow field of the liquid with a free fluid surface in a circular

£ing sector tank with a flat bottom, due to forced bending oscillations

of the tank, can be obtained from the solution of the Laplace equation

_ A _ = 0 and the appropriate linearized b_undary conditions. The cross

section of the tank was considered to be always of identical shape.

This will certainly be enhanced by the sector walls. Furthermore, the

undisturbed free fluid surface is assumed to stay in the same plane°

The bending of the walls of a tank of an elastic space vehicle can

be described as a super-position of translational, rotational, and bend-

ing oscillations with a clamped-in tank bottom. This is justified since

the theory is linearized.

The response of the liquid due to tr8nslational and pitching excita-

tion has been treated previously [i]. The problem left to be solved is
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the response of the propellant'due to bending excitation with a clamped-

in tank bottom. The boundary conditions at the tank walls as well as at

the free fluid surface (Figure i) aze for arbitrary wall oscillations

and are given in linearized form as:

iflXo (z) eiat cos q0}

-= at the tank wall r = a, b (2.1)
in Yo (z) eiDt sin (p

_z" = 0 at the tank bottom z = -h (2.2)

!
_v,_ '_ i£ Yo (z) at tile ta_t: sector wall q0 = 0 (2.3)r

I a_ __-ia XO (Z) el_t
sin 2_

--_'_,_;q_=( i_t ] at the tank sector wail (2.4)
r [in Yo (z) e cos 2_ _ = 2_

+ g _ -- 0 at the free flu'id surface (2.5)
z=O

where the upper and lower line on the right-hand side represents excita-

tion in x-directlon and y-direction, respectively.

The Green fuuction was used in thiu treatment, since in most cases

the displacement curve of the bending structure is not analytically known,

and since the representation of the solution as an integ£al is more ad-

vantageous for the numerical evaluation on high speed computers.

Separating the motion of the rigid body with solidified surface, the

potential becomes

i_r xo (z) cos _ etac

# + . (2.6)
• i_ r yo (z) sin

We obtai., for the boundary conditlon_ o_ the disturbance pote,_tial

the expressions#

= 0 for r = a, b; (2.7')
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• c

Ir_ = 0 for 9 = O, 2_ (2.8)

I-in x6 (z) r cos 9} for z = -h; (2.9)°_z = -in Y6 (z) r sin 9

_z Ii£r c°s 9[hexo(O)--gx6(O)]lg - n\ ,'f= for z = O. (2.10)

{in r sin 9[£ 2 yo(O) g y6(O)])

instead of the Laplace equation, the Poisson equation of the form

-in x_ (z) r cos 9}

a_ = = (Z.ll)
-i_ Y8 (Z) r sin 9

has to be solved with the above boundary conditions.

The solution of the Polsson equation which satisfies the first (2.7)

and second (2.8) boundary conditions is of the form

_(r, 9, z) = A n(Z ) cos q_--_ Cm_- m A(z) cos _ C(O)
m=O n=0 2_ (2.12)

where

Cm <_mnr)_ _(P)= Jm_..<_mn r) Y'm.<_mn)" J'm_.<_mn) Ym_<_mn r)
2c_ 2_ 2_ 2_ 2_

The values _mn are the positive roo_s of the equation

Am = J_ (_) Y' (k_) - J' (k_) Y' (_) = O.m m m

2_ 2_ ,2_ _ ,",_
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'lie expression k _ b/a is the diameter ratio of the inner to the outer
wall.

. Here, for the sake of simplicity, the double summations and the
indices m and n have been omitted. The abbreviations are:

• m r

_mn a"

For the determination of the '- "unmnown coefficients "_n, one expands

the right-hand side of the tank bottom and free surface conditions into
Fourier and Bessel series. 'Yhe cosine and sine can be expressed as

00

I sin _ 2_(-i_.m sin &
cos _ = a co8 _ with a ---- ; a = -- " ;(_ = 2_)

m o _ m (m2_._)
m=O

(2.t3)
CO

I i-cos& _m cos_ - tlsin q_ = c cos __ with c = -_-_-_--- ; c = ,- o 2 m-_ (m2_ - _)
m=O

The _adtus r can be expressed in the form

CO

r =_'b C(p) m = O, I, 2... (2.14)
/, mn

r_O

in which the coefficients are

_mn

a f O2C(p) do

_) (_ _'_ -_ ...k_m 2a N_ m

mr. _llln 4 d

" k_m n

• (2.15)

(See Appendix)

1964018917-012



• t

The solution of the Po._sson equation can be obtained from the

differential equations of the A

,,(z)- An(z) %n oosZ_, I _an
m=0 n=0 _ 20_

(2.16)

"i_ X(_ (z) r cos cp]
= I"L-Iny8 (zj_ s_n_

With the above mentioned series axpunsion, we obtain an infinite number

of ordinary differential equations

[mn [-ifl b a x_ (z)]

A" (z) - 7. %n (z) = ) mn m _ _ (2. i7)
Inn I-in b c y_ (Z))mn m

(m, n = 0, I, 2..o)

These differential equations are solved with the Green function. From

tileboundary conditions at the tank bottom and free fluid surface; one

obtains with the series expansions (2.13) and (2.14)

r-i,q b a x6 (-h)

A _ (-h)= [ mn m )j .mn -ifl bmn Cm Y6 (-h

[_e xO(O) " g x6(0)] inb amm1

g A' (0) - Qe A (0) = mn ,

mn mn [[_2 Yo(0) - g y6(0)] i_b cmn

i_t iflt

A translational motion xo(-h) e or yo(-h) e is superimposed.

Taking xo(-h) = 0 or y6(-h) = 0 the clamped-ln condition is obtained,

while for x6 = 0 or y6 = 0 the translational excitation case results.

The Green function finally is

a

Aim n = Gi (z,_) = _i(_) e a + _i(_ ) e . (2.18

i = 1 for -h < z < ,_

i = 2 for _ _ z.< 0
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It is at z =

The first derivative of the Green function has at z = _ a discontinuity
of unity

G_'(g,_)- G_<_,_)_ -1.

With this we conclude that

_mn _ _mn _ _mn _ _mn _

a a a &
ale - C_ e + _l e - 82 e = O.

_mn _ _mn _ _mn _ _mn _
----- _ ----- .____mn a mn a _mn a _mu a

_1----e - _e _''e " _I _e + _2_" e = -I
a a a a

and with the two homogeneous boundary conditions

_mn h _mn h

_mn a _m_ e a = O.alTe "_1 a

From these four linear equa[ions of the unknown values _,l, (_e.,_i, _e
one obtains

" 2 _ cosh _mn . (1 - _]2)
: a

:

i

4

-i I
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8

_mn

2--cosh(_mn h) (i. _2)

oosh

_m'n <_mn l_
2 -- cosh (i -

a a'] _2)

- i_ _2 cosh (_ +
/

_mn ( h_2 a'--_cosh gmn (i- _2)

where _ = _ is the ratio of exciting-to Eigen=frequency, and
mn

2 g_mn (_mn h).
= -- tanh

mn a

The Green function is then

sinh + _ cosh _mn z

G1(z,_) = - _ _2 cosb.[_mn(_ +h)]

-_- cosh _mn (I - _2)

for -h < z < _. (2.19).
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for _ < z <_ 0. (2.20)

The solution for the homogeneous boundary conditions in then:

i _ cosh

Amn(Z) = i_b - 1.12o

mn _mn <_h)
-- cosh (I - .q2)

[ / a

-f-cosh " _) z LyS(_))

i

g_mn _! d_., (2.21)+ _ eosh mn aZJ

The solution for the inhomogeneous boundary condition

. A (-h) = I
mn- -

. g A' (0) - n2A (0) ,, 0mn mn

1964018917-016



• - • ---_ .... 7_ _-!..... I _ m_mmm

I0

is

a "-- - (2,22)

_ _mn(_)-_- cosh _mn (I - I"Ie)

and the one for the boundary conditions

A' (-h) = 0mn

gAin(0)-a2A (0)= 1• mn

i8

i_bmn _2 _em[YO(0). _y_(0)] ° eoshk_mnh)(l = _2 ) "

The solution of the differential equation (2o17) is then:

i_ abmn _2

An (z) =-- / hkern _'--_"_"- [sinh('mnZ) +

o _mn cosh(_mn a} (i- _2)\ /

+ _ cosh 'z)l ' y6C-h)J

+5I_' oo_u[_(_+_)1_+oo_[_o,,_(-:+_)1.
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O

+ • (2.24)

The velocity potential is then

[I !_(r, _, z, t) _ e iat +
• Li_yo(z) r sin q9)

.

oo om-0 n_0

The term,ln front of the double summation sati_fles the boundary
conditions at the tank walls_ while the terms of the double series

, vanish at the tank wails. The double summation together with the term
in front of it satisfies the free surface condition, if one considers

the results of (213), (2o14), and the Eigen values _2 _ gmn• mn a --

: With this velocity potentlal, the free surface displacement, the pressure
and velocity distribution, as well as the forces and m_ments of the liquid
can be obtained by differentiations and integration with respect to the
time and _paclal coordinates.

The surface displacement of the %lquld measured from the undisturbed
: posltion

_ i_t + .
, _'7 "_ . Lyo(O)r si_ L " _--__

m_O n-O 2_

(2.26)

r
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The pressure in a depth (-z) is

Ixo(++)r cosP = " # _t" gpz = _e ei_ t _Yo(Z) r sin q_I, +

+ I I Amn(Z) Cm (_mn r_ cos(___ - pgz.

m=0 n=0 2_ (2.27)

At the °uter tank wali r = a the value °f C _mn a_ is 2/g _mn'while__
2_

(',_ n).at the inner tank wall r = b it is Cm- _m
2_

At the sector walls _ = 0 and _ = 2_f4 the cosine function has the

value I and (-I)m, respectively. The pressure distribution at the tank

bottom results from (2.27) by setting z = -h.

From the pressure distribution, the liquid forces and moments are

determined by integrating the appropriate components. In x-direction,
the force is:

21r0_o a o

// /5= - _- _ sin 2_ dr dz.
_x (a Pa Vpb_ cos _ d_ dz - P_ = 2m_++

o -h b -h

The first integral represents the contribution of the pressure distribu-

tion from the circular walls, while the remaining integral is due to the

pressure distribution at the sector walls. With the liquid mass

m = _ ae h(l - k2), the liquid force in x-direction is:
o

xo(z)dz
-h

F = m_ e eiflt +
x

0

1964018917-019
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oo co 0

m=O n=O -h

< 4e'e(m-_r':-"4_ [2-'/--" k Cm Lk _mn)]+N°(_mn)i]__mu 2"_ (2.28)

where

_mn

/ C (p) dp, (See Appendix. _
N°(_mn) = _mn _ /

k _mn

" The force component in v-dlrcet£on is with

2_ o , a o

55 //= [a Pa " b pb ] s£n _p dz dq_ -Fy . • P_0 dr dg
0 . ,,h b -h

a o

+ f f P_=2_ c°82_drdz,_
b -h

g£ven by:

o i
| I f'

. L _ _ J yo(S) dz-h

1964018917-020
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_o co o

2_ a h(l - ka) Amn(Z ) dz.
m=0 n=0 -h

" (me - 40_ _ _mn" m__.

2(x (2.29)

o

The term mile eilt ./"

F-%

Xo(Z) dz (in front of the double summation)
%2

-h

in Fx represe_te the inertial force_ i.e., the liquid force with restraint

surface. The l_quid moments with respect to the point (0,0, - _) are
given by

2_ o

M = (a Pa ' b pb ) - 2 + z) cos _o d_o dz +Y
o -h

2_ a a o

// //+ Pc r2 cos _0d_o dr - P_o = 2_ sin 2_t_ (_ + z) dr dz
o b b -h

and

2_ o 2_ a

o -h o b

a o a o

+

b -h b -h

1964018917-021
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M_, is the _oment about the parallel axis to the y-axis through the
point (0, O, _ _) and Mx is the moment about a parallel axis to the x-axis
through the same point. The first integral represents the contribution

of the pressure distribution from the circular walls. The second integral4

is the contribution of the pressure at the tank bottom, while the remain-

ing integrals can be easily identified as the contribution to the moment

due to the pressure distribution at the tank sector walls. The moments

are given by

0

I n ,h __/I sin 2_C_ cos 2_)J _ + z)x°(z)dz + 4h k__ + 2_z
i

-h I

My = ma2 eiat I

a__O_+ k2_ sin2 2_

0 + 4b 2_ /

_ (_ (x)

_" (ma_. 4_ ) N2 (_Im) -_.n (-h) +

n_O m=O i_ a h(l- ka)

+ [._!_2.. k c (k _ + N <k _) ,
L* _n m__ _ o2c_

o (x)

• f h A(y) } a sin2_ _,_
(_ + z) (z) dz + mg _ _ (i + k)mn

-h

_2.30)
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and

F
a_l + kex_ sin2 2_

4h 2_C_

i_t
M =m_ae +
X

0

(_ + z)yo(z)dz + a2(l+k2)yE-_-_ sin 2_ cos 2I - 2_(0_
"h

_ (x)

"' -f_ a nC_h-(1 :--k a) " (m-_ : _ (-h) N (_mn) +
n=O m=O.

m

+[m-_--_ (_--_m " k Cm_ (k _mn)+N(2-_)(_mn)]o
2a

(x)

o .,] a.[i.-_cos2_i
F(h + z) A(y)(z) d_) + mg _ a_ (I + k)d mn - _ ,

-h

(2.31)

_mn

I 7 p2where N2(_mn) = _ C(p) dp_ The last term in these re_mlts

k _mn

represents the moment of the undisturbed liquid about the point
(0) O, - h). Tb_ veloc'itydistribution is:

2
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rf \

I iaxo(z)cos_ (x). i , co eo

intlJ \ A (y) (z) cos"r ''e i' ( + ,,,n (_'.,
Iti *" yo(,) ,,ine. .-0m=O

| -, )
L '-

i_ XO(Z) sin (p _ _ (x) ]

Jf/t A' .m _mn
u_p - e + sin _)= mn _Yd --" I

-ifl yo(z) cos _ n=O m=0 2_ i

\

in r x6(z) cos _| = . (x)
/

W = e Z_ mn (z) cos ( e)C m__ _mn

i_ r y6(z) sin _ n=O m=0 2a

/

The velocity distribution in the tank is obtained by omitting the

first term in ur and u_. These terms represent nothing but tbe tank

motion. Making Xo(Z) xo = constant or yo(Z) = Yo constant, the
results for translational oscillations will be obtained [I].

III. SPECIAL CASES

Tank_ with circular cross s_ction are at present the most frequent

:contalners. Tendencies in sp_ce technology, however, point toward the

intersection of tank by radial walls° Subdivision of a cylindrical tank

Inuo four quarter compartments is a possibility to reduce the dynamic

influence of the propellant sloshing Upon the stability of the space
vehicle. Concentric containers could be beneficial, if one could choose

Q

their diameter ratio in such a way that the phasing and sloshing mass of

the propellant inside and outside is such that their combined effect

cancels. The theory of liquid motion due to bending tank wall was al-

ready presented for annular cylindrical tanks [2]. In the following we
shall restrict ourselves to the sector and circular tank. The main

,, results are given in T_ble I_
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A. Sector Tank

If the diameter ratio k = b/a tends to zer _, then the.results of

(2.2) represent the motion of a liquid with free fluid surface in a
tank with circular sector cross section° The zeros of the determinant

Z_n

2-_ (_) = 0 are now obtained from the equation J_(£) = 0 and are noted

by emn. Furthermore, the function C(p) is substituted by J(p) _ Jm (emn _)'r

The integration constants b transform into 2_mn

£
mn

a / p2 j(p) dp
= m, n = 0, l, 2, .......

mn e
mn

emn f p je(p) dp
0

which is

eo

_4a + 3/2) T _(,m/2C_+ 2_ + 1_).£ (m/4Cz_ (emn)F (m/'4_ - 1/2)" _ -- ....- F (m/4(:Z + bt + 5/2) Jff2a -f- 2p + 1

_o = 2a _=0 -=

tan £mn (I - m2/4 .0:e emn)2 j2m (emn)

2a
(3.1)

In the force components, one has to omit the singular solution at

= - (k _mn) has to be substitutedr 0. Therefore, the value 2/_ _mn k Cm

2a

by Jm (¢nm)" The expression No(_mn) transforms into Lo(_mn), since

2a

fC(P) do is f J(.P) dP. Similar results are valid for N2(_mn), which

transforms into Le(_mn). The velocity potential, the free fluid surface

displacement and the force and moment components are represented in
Table I.

1964018917-025
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B. Circular Cylindrical Tank

For a container with circular cross section it is _ = i. This

• repreoe_ts a container with a side wall in the _ = 0 plane from r = 0

to r = a. The values _, _mn are then:

lim I _ sin 2_

a =a _0, a2 =
o m a-_l _(i_- ) = i.

If one chooses an excitation in x-direction, the sidewall does not

disturb the flow field. The expression Ben is obtained from (3.1) with

the recurrence formula of the Bessel funqtions x J_(x) - v $v(X) =

..x Jv=l(X), which is for x = _n as the zeros of the equation J1(_n) = 0
and with the consideration of the singularity of the Gamma Function at
the argument zero,

• 2a

b_ = (_n2 - I)J_(_n_ "4_

The velocity potential is therefore due to bepdlng excitation in
x-dlrectlon: /

(

_(r, _, z, t) = i_e i_t a cos _ _ Xo(Z ) +

+ 2 n_'l (een - I) Jl(en)_ cosh (_n a )

. sinh (¢n z) + aG-_" cosh (_n ) ' _(-h) +

z

& (_ + h) dg + cosh [ n (z + h) .
'_h

1964018917-026
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• x_(_) sinh (en + a _2 cosh d_ +
z

E i)J__n xo(O) _-x6 (0) (3 2)+ a " _Z2 "

9

The free iluid surface displacement and the force and moment of the
_iquid are represented in Table 2.

It can be seen from the free fluid surface displacement that
with increasing exciting amplitude xo(O) at the free fluid surface
location the surface displacement increases, With increasing accelera-
tion the displacement of the free fluid surface decreases.

In the liquid force the limit value is

,'o_-._1 _a '_a 2 J " + =- m. _emn) Lo (emn) dl(en)

m -+ 2 20_

and in the moment the value Le(@n) = Jl(e )/e2n and

[<>m' ifm -i +I s.in 2_ = 2
_-+i _X_ "
m-_2

In the numerical evaluation, a bending displacement is considered,
which has the form

" 25--'6 (_)" + ( ) " 6 .

1964018917-027
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Here a tank of height H = 5a is ch,)sen (Figure 2). The maximum

amplitude of this displacement is Xo/a = i/I0.

Figure 3 exhibits the fluid force versus fluid height ratio h/a for

• various exciting frequency ratios qi = _/_i" The fluid height has, of
course, considerable influence, since the exciting amplitude is changing

along the z-axl8. The moment of the liquid (Figure 3) exhibits similar
behavior.

The total force and moment are generally less for a given maximum

bending amplitude than for a translational motion of the 2ame magnitude.

The maximum dynamic effects occur when the free fluid surface is located

around the point of maximum bending displacement. With increasing fluid

height the contribution of the sloshing mass decreases, while the inertial

force increases. With increasing exciting frequency this inertial force

becomes larger. Close to liqdid resonance therefore the inertial effect

is not strong enough to overcome the decrease of the effect of the slosh-

ing fluids due to the diminished %ocal exciting amplitude with increasing

fluid height. Pressure a_d velocity distribution can easily be obtained

[3].
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APPENDIX

A. Roots of Certain Bessel FupctiOnso For the previous results the
floorsof

J' (_) Y' (_)
m m

2_ 2C_

(_)= = 0
m

2a

J' (k_) Y' (k_l! m m__
2a 2_

have to be determined for m = 0, I, 2,.......and arbitrary 0 < k < i.
For most of these roots J. McMahon represented asymptotic expansions
[4]. The smallest root, however, was not known until H. Buchholz pointed
out its existence [5]. D. Kirkham [6] gave the roots of the above equa-
tion in a graphical way for m/2_ = 0, I, 2, 3, 4.

B. Representation of a Function in Bessel-Fourier-Series

The determinant C is
m
2a

Jm (%ranr) Ym (_mn r)
2a 2_

Cm (_mn r) =
2a

J' Y' (_mn a)m (_nn a) m
2a 2a
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Its derivative is

J' (_mn r) Y' (_mn r)m m
, 2_ 2_

, %n r) =Cm
2_

2_ 2c_

which vanishes for r = a and r = b, that is,

C'm (_mn a) = C'm(_mn b) = 0
2_ 2_

for r = a, the derivative of C -
m

2_

vanishes identically, while for r = b the roots (_mn) - (_mn a) make itvanlsh.

A function f(r)_ _hich is pieeewlse regular in the interval

b<r<a,

satisfies the Dirlehlet condition and can be expanded into e Bessel-
Fourier series of the form

0o

'-" b(_)f(.r)_,/ mn c,,,.,.%_ r.). (m"-.O,i,2,,....)
n_O 2_

O

The unknown coefficients of the expansloa will be determined by multiply-

. Ing both sides of the equation with r Cm_- (_mp r) and integrat'Ingfrom
2_
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r = b to r = a. Here Amp and _mn are different roots cf the determi-
nant Z_ = 0. It is

_ m

: 2_

f

_ b a

I bran ,/r Cm_(_mn r)C m_(_mp r)dr = /r f(r)Cm (%mp r) dr.

! n=O a 2_ 2_ b 2_

With the integral of Lommel, we obtain

dC (_ r)
! [ m mp

(%e- %mep)/r C (%mn r) Cm (%rap r)dr = r I Cm (%mn r) 2_.___,
2--_ 2_ 2_ dr

!

dC (_mn r)

- r) 2_ (n _ p)
_' Cm (_mp dr

.:7

" and the integral on the left-hand side is

_ r

_, r Cm (_mn r) Cm_(_mp r) dr = _ C
!ii _° 2_ (N_n %mep) p m (_mn r)
"i

g (F)

,, _ m%'. r)i" (P _ _1
2C_ 2_ 2C_ "

,!

The integ_,al is zero_ if the conditions are satisfied:

i c' =c' (_e a)--c' (>, b)-C' (_ b)-,O., m (')_n a) _- m mn m._ mp
2_, 2C_ 2C_ 2cx

(e)
! '

!
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Those terms for which .._n_ .-%_,pvanish, and one obtains for the
coefficients

" a

r f(r) Cm_(_ran r) dr

b(f)= b 2a (H)
mn -

a

f r C2 (_U r) drm

b 2a

For p = n the equation (F) will be an indeterminate form, which will be
treated with Taylor expansion or the rule of L'Hospital, and is with
the Bessel differential equation _or C

m

2_ ..

r Cm (_mn r) dr = _ "%n 4_--_"_2 ] + Cm2(%mn r) .
2"_ --" 2"_

(z)
r t

We thus obtain in the interval b _ r _ a

IC L m 2 ! 2 1
2a m_l 2-'a

r Cem%m _) dr :i

b 2a

-r-_b_[c_ (L. b) (1- __) +c' b)
2a 2¢_

, (J)

which J,sdue ec the boundary conditions i
w

r Cem(_mn r) dr - _ (_mn " , ) " .._ _mn)(k2 gmn " 40_2)] °
b 2_ 20(

(K)
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2 is the Wronskian determinant. The coefficient
Here, Cm__ (_mn) = _ _m--q

2_

b(f).of the Bessel-Fourier expansion can be determined from
mn

a

e f(r) (_mn a') dr2 _mn r Cm_L.

b(f)= b 2_ . (L)
mn

ae [_mn 2 m2 me ](_mn " _) _ C2m (k _mn) (k2 _mn2_ _._)
2_

,a

The problem that remains is the solution of the r f(r) Cm (gmn a) dr.
b 2_

Most of the integrals in the previous treatment are of the form

f zK Cv (z) dz.

These can be obtained with the •helpof the Lommel functions SKv(Z) or
by integration of the series expansion of the integrals.

zK _ yW (_mn_ _z K dz - J' (_mn_ _z K Y (z) dz.
(z)dz J (z)

_m m "= " J m m "_ " d m
2-_ "2_ 2_ 2_ 2"-d

(M)

integrating the first integral term by term and collecting terms of

Jv + 2B + I' one obtains

.V+K+I
_o r i---f-- + t0

; z,c r_,
zKp (._I_) (V+2_+l)

jr(z) dz = .v-K+l. )___T-Y'. "_.... Jv+2tt+l (N)
tt=O

where Re (K+_+I) must be > 0 if one integrates from z = 0 on.
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The second integral is obtained by termwlse integration of the

series expansion of the Bessel function of second kind

It is for (2___ integer)
q

m - i m
2_ m -_

J Ym_'z)dz= - _ _! (K_2_ m2a _=0 " " 2-_,+ I)

m

2=K +l p=Z0 (']')_" (_ 2"_ "[" 21_ f

__')'_-'_ . In z I

_j (_ + _) ! (_ + _+ 2_,+ l) _ _ " 7 * <_+ l)

m

• 1 m 2zK + I '_ (.i)_ (_.)2-'_+ 2_'} Z '"7'(_+_ +I "---V-- _! _+_) ! L+K+2_+I)2

(o)

where _(z) represents the logarithmic derivative of the Gamma function

00

9(z) _=- 7+(z - i) >
i

)v_o

and "/is the Euler constant. With these results, we obtain the inte-

grals as mentioned in the text.

" b 2(_

(q)

a (_m_P
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It may be mentioned here that some of the integrals in which B is I - v
or v + I can be obtained from the recursion formulas

P I - vC I - v I - v , -v "
j z v (z) dz =- z Cv - I (z) =- z Cv (z) - z v Cv(z)o

j v + I Cv(z _ v + I v + I _,z .. dz = - z Cv + i (z) = vzv Cv(z) - z _ (z).v

C. Limit Co_sideratigns_for k--_O

The previous r_suits can be applied for cylindrical tanks with cir-
cular cross section by letting k -+ O. The zeros of the determinant

I Jr' j

L\, (_)= i J'v (k _) Y' (k _)1"Or

approach for k-_ 0 the value ¢ for J' = O. This is due to the fact
that mn _

2c_

X

Jv (x) 2v r (v +1)

for smai1 x and

-2 v £_,

for V > 0 and small x. Instead of the value

Cm (_mn _)

2_

in a ring sector tank, the values of Jm (amn_) have to be taken for a

2_

i, I
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container of circular sector cross section.

With (N) we obtain the values Lo, L2 for the sector tank_

.

L_(_'_) _ 1(_mn) m2 m (Re _ > - I)
• (¢mn) _mn J2B + _ + -

(_. , (_+2_+!) r (_E+_-

_mn P (_ _ ) p (m. 5 -- J (_mn)u=0 4_ + _ + 3) 2-_+ 2_ +

The other values can be obtained in a similar way.
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TABLE I

Sector Tank

Free Surface Displacement:

¢0 CO

ace iat irxo(0) cos + Amn (0) r mz = _--+- _ryo(0 ) sin L Jm__(¢mn a ) " cos(_
m=0 n=0 2(_

Fluid Force_

O OO CO

++ +z+II ++"x i_ah_ "

-h n=l m=0

m o (x)

[m 4_e (_)(emn)] /A (y)(z) dz]" 2 ."_ Jm (emn) + Lo " mn
2_ -h

o _ _ o (x)

= mf_2ei_t[l f { 0 )I dz +I I j_('l)m c°s 2_ "III• "_ +rA(y),"+_'Fy +J YO (z i m _ _ a + mn
dz.

-h n=l m=0 -h

m

L'(mm - 4_ Jm_.(Cmn) + o (_mn)
2_

Fluid Moment:

o

_. sin 2_ co8 2_= m_eei_t I P h (z) dz + i +------------
My _ J (7 + z) x° 4h ( 2_

-h +

_Q (-h)@a sin e 2_
0 + 4h " _ 2_0_ +--
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-li_ I sln&__ 2 (2_) (x)

• n_l m_O

o (x) z,_l '
" _ l _l h A(Y) a sin 2_

I_ m----( (_+ z) (z) d +mg-
'- ' _ 20_

= .mQ2eiflt 4h -_" f +
Mx 4h 2_ _ (_ + z) yO(z) dzoh

(x) (._)

+ L i_ "l__ _'_'_
n_-i m=O

" (x)

+ _ (_mn)+L (_m ' ( + _)A_(z)dz

_t

- m8_

P
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TABLE II

Circular Cylinder Tank

Free Fluid Surface Displacement:

= g -- 7 xo(O) + 2 h '
(¢ne - 1)Jl(en) (_'_a)COSh(e n a ) (1-_12)

o

[¢ng( x f I _ ] _) _ _n_ hoL_-_ SO-h) + xg(_) cosh (_+h) d + na cosh o
-h

.Exo 0, lJ)
Fluid Force:

= mgeei_t i __,_._._2 .
Fx _ Xo(Z ) dz + 2 h h

-h n=l (On2 _ l)(¢n a ) cosh (¢n a)(I'_2)

o z

+ f (sinhC-_ +_ng /En _)cosh[_ _+h_ dz]+
-h -h

o

-h
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0 _'

/ ¢+)III, . =i(I) =inh +_ _o=h a_;d=
Z

• 15,=,0

Fluid Moment : o

My . mae_eeiflt _+ I f 1 z4h _ ( + _) Xo(Z)dz +%J

-h

O0

_._ . .,. -

n=l ) (en I) cosh (En ) (i - IV)ae "

. =_<.=>If_ =\_=%- %1>=" ��÷°��$�8�t

0

)/_-a2 + _ j o- si_ (% k%-7 + "2 / x"(l) s_nh _ +
- j n -h "

0 0

+ _ x" (I) cosh I +_ slnh
£tl 0

-h -h '
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o Cn)] 5[ ]P" enhg o

= d Xo(_) sinh _ dz + 2aa---_ cosh (z + h) .
z -h

0 0

• fXo(_)cosh _ _]dz + / [z sinh (_ z).
z -h

Z 0

F [_ ] ] £g/In (_ z)
. z coshX"(_) cosh (_ + h) d_ dz + _ o

d o-
_h -h

Z " 0

-h -h

x" (_) _inh g dz +a-h-_ z cos_ [ a •a 0

0

• /_'J 0
Z

..... sinh
" e e 2 "

n n ,

a

M _ O'o

X
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Z /#Y 1" a -----4 x_(z)ei._/,t

MTP-AERO-62-61

FIG. I' TANK FORM, COORDINATE SYSTEM AND BENDING

EXCITATION
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